Penggunaan Aplikasi Machine Learning (Ml) dalam Kurikulum Perubahan Iklim
DOI:
https://doi.org/10.37985/jer.v5i4.1841Keywords:
machine learning, kurikulum dan pembelajaran, adaptasi dan mitigasi, climate changeAbstract
Penelitian ini bertujuan untuk mengeksplorasi penerapan Machine Learning (ML) dalam mendukung pemahaman siswa SMK Pertanian di Indonesia terhadap isu perubahan iklim. Melalui pendekatan Systematic Literature Review (SLR), artikel-artikel relevan dikumpulkan dari basis data ERIC dan Science Direct dan dianalisis secara tematik untuk menemukan pola serta kontribusi utama dari ML dalam pembelajaran mitigasi perubahan iklim. Temuan utama menunjukkan bahwa penerapan ML dalam kurikulum berpotensi memperkuat keterampilan analisis siswa terkait perubahan iklim, memberi wawasan praktis mengenai strategi mitigasi, dan adaptasi yang dapat diimplementasikan. Hasil ini mengindikasikan adanya dampak positif ML dalam meningkatkan pemahaman konseptual siswa terhadap isu-isu lingkungan. Implikasi praktis dari penelitian ini adalah bahwa integrasi ML ke dalam kurikulum pendidikan SMK Pertanian di Indonesia bisa menjadi strategi efektif untuk mempersiapkan siswa menghadapi tantangan perubahan iklim, sekaligus berkontribusi pada pembangunan berkelanjutan. Namun, kesenjangan penelitian masih ada terkait penerapan ML dalam pendidikan mitigasi perubahan iklim di tingkat SMK, khususnya pada konteks kurikulum berbasis kompetensi.
Downloads
References
Agrawal, R. C., & Jaggi, S. (2023). Transforming Agricultural Education for a Sustainable Future. In Transformation of Agri-Food Systems (pp. 357–369). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-8014-7_25
Ajibade, S.-S. M., Zaidi, A., Bekun, F. V., Adediran, A. O., & Bassey, M. A. (2023). A research landscape bibliometric analysis on climate change for last decades: Evidence from applications of machine learning. Heliyon, 9(10), e20297. https://doi.org/10.1016/j.heliyon.2023.e20297
Balasundram, S. K., Shamshiri, R. R., Sridhara, S., & Rizan, N. (2023). The Role of Digital Agriculture in Mitigating Climate Change and Ensuring Food Security: An Overview. Sustainability, 15(6), 5325. https://doi.org/10.3390/su15065325
Bamal, A., Uddin, M. G., & Olbert, A. I. (2024). Harnessing machine learning for assessing climate change influences on groundwater resources: A comprehensive review. Heliyon, 10(17), e37073. https://doi.org/10.1016/j.heliyon.2024.e37073
Bao, N., Peng, K., Yan, X., Lu, Y., Liu, M., Li, C., & Zhao, B. (2024). Towards interpreting machine learning models for understanding the relationship between vegetation growth and climate factors: A case study of the Anhui Province, China. Ecological Indicators, 167, 112636. https://doi.org/10.1016/j.ecolind.2024.112636
Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115. https://doi.org/10.1016/j.inffus.2019.12.012
Bochenek, B., & Ustrnul, Z. (2022). Machine Learning in Weather Prediction and Climate Analyses—Applications and Perspectives. Atmosphere, 13(2), 180. https://doi.org/10.3390/atmos13020180
Crane-Droesch, A. (2018). Machine learning methods for crop yield prediction and climate change impact assessment in agriculture. Environmental Research Letters, 13(11), 114003. https://doi.org/10.1088/1748-9326/aae159
Grenier, M., Boudreault, J., Raymond, S., & Boudreault, M. (2024). Projected seasonal flooding in Canada under climate change with statistical and machine learning. Journal of Hydrology: Regional Studies, 53, 101754. https://doi.org/10.1016/j.ejrh.2024.101754
He, Y., Wang, G., Ren, Y., Gao, S., Chu, D., & McKirdy, S. J. (2024). Machine learning ensemble model prediction of northward shift in potato cyst nematodes (Globodera rostochiensis and G. pallida) distribution under climate change conditions. Journal of Integrative Agriculture, 23(10), 3576–3591. https://doi.org/10.1016/j.jia.2024.08.001
Helm, J. M., Swiergosz, A. M., Haeberle, H. S., Karnuta, J. M., Schaffer, J. L., Krebs, V. E., Spitzer, A. I., & Ramkumar, P. N. (2020). Machine Learning and Artificial Intelligence: Definitions, Applications, and Future Directions. Current Reviews in Musculoskeletal Medicine, 13(1), 69–76. https://doi.org/10.1007/s12178-020-09600-8
Jain, H., Dhupper, R., Shrivastava, A., Kumar, D., & Kumari, M. (2023). Leveraging machine learning algorithms for improved disaster preparedness and response through accurate weather pattern and natural disaster prediction. Frontiers in Environmental Science, 11. https://doi.org/10.3389/fenvs.2023.1194918
Khuriyati, N., Guritno, A. D., Kurniawan, M. P., Hidayah, N., & Hendry, J. (2023). Dissemination of SDGs 4, 9, 13 through Strengthening Curriculum for Senior Vocational High Schools. Proceedings of the 3rd International Conference on Community Engagement and Education for Sustainable Development, October 2023, 225–234. https://doi.org/10.21467/proceedings.151.32
Kolevatova, A., Riegler, M. A., Cherubini, F., Hu, X., & Hammer, H. L. (2021). Unraveling the Impact of Land Cover Changes on Climate Using Machine Learning and Explainable Artificial Intelligence. Big Data and Cognitive Computing, 5(4), 55. https://doi.org/10.3390/bdcc5040055
Kushwaha, N. L., Sushanth, K., Patel, A., Kisi, O., Ahmed, A., & Abd-Elaty, I. (2024). Beach nourishment for coastal aquifers impacted by climate change and population growth using machine learning approaches. Journal of Environmental Management, 370, 122535. https://doi.org/10.1016/j.jenvman.2024.122535
Leal Filho, W., Wall, T., Rui Mucova, S. A., Nagy, G. J., Balogun, A.-L., Luetz, J. M., Ng, A. W., Kovaleva, M., Safiul Azam, F. M., Alves, F., Guevara, Z., Matandirotya, N. R., Skouloudis, A., Tzachor, A., Malakar, K., & Gandhi, O. (2022). Deploying artificial intelligence for climate change adaptation. Technological Forecasting and Social Change, 180, 121662. https://doi.org/10.1016/j.techfore.2022.121662
Ma, Z., Awan, M. B., Lu, M., Li, S., Aziz, M. S., Zhou, X., Du, H., Sha, X., & Li, Y. (2023). An Overview of Emerging and Sustainable Technologies for Increased Energy Efficiency and Carbon Emission Mitigation in Buildings. Buildings, 13(10), 2658. https://doi.org/10.3390/buildings13102658
Mahdizadeh Gharakhanlou, N., & Perez, L. (2024). From data to harvest: Leveraging ensemble machine learning for enhanced crop yield predictions across Canada amidst climate change. Science of The Total Environment, 951, 175764. https://doi.org/10.1016/j.scitotenv.2024.175764
Miglani, A., & Kumar, N. (2019). Deep learning models for traffic flow prediction in autonomous vehicles: A review, solutions, and challenges. Vehicular Communications, 20, 100184. https://doi.org/10.1016/j.vehcom.2019.100184
Moradian, S., Iglesias, G., Broderick, C., & Olbert, I. A. (2023). Assessing the impacts of climate change on precipitation through a hybrid method of machine learning and discrete wavelet transform techniques, case study: Cork, Ireland. Journal of Hydrology: Regional Studies, 49, 101523. https://doi.org/10.1016/j.ejrh.2023.101523
Papakyriakou, A., Bigtashi, A., & Lee, B. (2024). Evaluating the applicability of a machine learning methodology to improve TMY weather file generation for different Canadian climate zones. Journal of Building Engineering, 95, 110096. https://doi.org/10.1016/j.jobe.2024.110096
Raihan, A. (2023). Artificial intelligence and machine learning applications in forest management and biodiversity conservation. Natural Resources Conservation and Research, 6(2), 3825. https://doi.org/10.24294/nrcr.v6i2.3825
Rifath, A. R., Muktadir, M. G., Hasan, M., & Islam, M. A. (2024). Flash flood prediction modeling in the hilly regions of Southeastern Bangladesh: A machine learning attempt on present and future climate scenarios. Environmental Challenges, 17, 101029. https://doi.org/10.1016/j.envc.2024.101029
Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., Lacoste, A., Sankaran, K., Ross, A. S., Milojevic-Dupont, N., Jaques, N., Waldman-Brown, A., Luccioni, A. S., Maharaj, T., Sherwin, E. D., Mukkavilli, S. K., Kording, K. P., Gomes, C. P., Ng, A. Y., Hassabis, D., Platt, J. C., … Bengio, Y. (2023). Tackling Climate Change with Machine Learning. ACM Computing Surveys, 55(2), 1–96. https://doi.org/10.1145/3485128
Sahoo, S., Singha, C., & Govind, A. (2024). Advanced prediction of rice yield gaps under climate uncertainty using machine learning techniques in Eastern India. Journal of Agriculture and Food Research, 18, 101424. https://doi.org/10.1016/j.jafr.2024.101424
Salcedo-Sanz, S., Ghamisi, P., Piles, M., Werner, M., Cuadra, L., Moreno-Martínez, A., Izquierdo-Verdiguier, E., Muñoz-Marí, J., Mosavi, A., & Camps-Valls, G. (2020). Machine learning information fusion in Earth observation: A comprehensive review of methods, applications and data sources. Information Fusion, 63, 256–272. https://doi.org/10.1016/j.inffus.2020.07.004
Sharma, V. (2020). Exploring the Predictive Power of Machine Learning for Energy Consumption in Buildings. Journal of Technological Innovations, 3(1). https://doi.org/10.93153/0svkc562
Shivaprakash, K. N., Swami, N., Mysorekar, S., Arora, R., Gangadharan, A., Vohra, K., Jadeyegowda, M., & Kiesecker, J. M. (2022). Potential for Artificial Intelligence (AI) and Machine Learning (ML) Applications in Biodiversity Conservation, Managing Forests, and Related Services in India. Sustainability, 14(12), 7154. https://doi.org/10.3390/su14127154
Siddaway, A. P., Wood, A. M., & Hedges, L. V. (2019). How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-Analyses, and Meta-Syntheses. Annual Review of Psychology, 70(1), 747–770. https://doi.org/10.1146/annurev-psych-010418-102803
Subramaniam, R. K., Samuel, S. D., Seera, M., & Alam, N. (2024). Utilising machine learning for corporate social responsibility (CSR) and environmental, social, and governance (ESG) evaluation: Transitioning from committees to climate. Sustainable Futures, 8, 100329. https://doi.org/10.1016/j.sftr.2024.100329
Tang, K. (2024). Climate change education in Indonesia’s formal education: a policy analysis. Npj Climate Action, 3(1), 57. https://doi.org/10.1038/s44168-024-00143-z
Wen, H., Hu, K., Nghiem, X.-H., & Acheampong, A. O. (2024). Urban climate adaptability and green total-factor productivity: Evidence from double dual machine learning and differences-in-differences techniques. Journal of Environmental Management, 350, 119588. https://doi.org/10.1016/j.jenvman.2023.119588
Xiao, F., Zhang, Z., Wu, Z., He, W., & Li, J. (2024). Machine learning-based climate zoning and asphalt selection for pavement infrastructure under changing climate: A focused study of Ningxia, China. International Journal of Transportation Science and Technology. https://doi.org/10.1016/j.ijtst.2024.10.001
Yang, J., Ahn, D., Bahk, J., Park, S., Rizqihandari, N., & Cha, M. (2024). Assessing climate risks from satellite imagery with machine learning: A case study of flood risks in Jakarta. Climate Risk Management, 46, 100651. https://doi.org/10.1016/j.crm.2024.100651
Zennaro, F., Furlan, E., Simeoni, C., Torresan, S., Aslan, S., Critto, A., & Marcomini, A. (2021). Exploring machine learning potential for climate change risk assessment. Earth-Science Reviews, 220, 103752. https://doi.org/10.1016/j.earscirev.2021.103752
Zhang, X., Zhang, Z., Liu, Y., Xu, Z., & Qu, X. (2024). A review of machine learning approaches for electric vehicle energy consumption modelling in urban transportation. Renewable Energy, 234, 121243. https://doi.org/10.1016/j.renene.2024.121243
Zhong, C., Li, L., & Wang, Y.-Z. (2024). Applications of chemical fingerprints and machine learning in plant ecology: Recent progress and future perspectives. Microchemical Journal, 206, 111447. https://doi.org/10.1016/j.microc.2024.111447
Downloads
Published
How to Cite
License
Copyright (c) 2024 Widya Puji Astuti, Munir Munir

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgement of the works authorship and initial publication in this journal.Â
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journals published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).