Penggunaan Aplikasi Machine Learning (Ml) dalam Kurikulum Perubahan Iklim

Authors

  • Widya Puji Astuti Universitas Pendidikan Indonesia
  • Munir Munir Universitas Pendidikan Indonesia

DOI:

https://doi.org/10.37985/jer.v5i4.1841

Keywords:

machine learning, kurikulum dan pembelajaran, adaptasi dan mitigasi, climate change

Abstract

Penelitian ini bertujuan untuk mengeksplorasi penerapan Machine Learning (ML) dalam mendukung pemahaman siswa SMK Pertanian di Indonesia terhadap isu perubahan iklim. Melalui pendekatan Systematic Literature Review (SLR), artikel-artikel relevan dikumpulkan dari basis data ERIC dan Science Direct dan dianalisis secara tematik untuk menemukan pola serta kontribusi utama dari ML dalam pembelajaran mitigasi perubahan iklim. Temuan utama menunjukkan bahwa penerapan ML dalam kurikulum berpotensi memperkuat keterampilan analisis siswa terkait perubahan iklim, memberi wawasan praktis mengenai strategi mitigasi, dan adaptasi yang dapat diimplementasikan. Hasil ini mengindikasikan adanya dampak positif ML dalam meningkatkan pemahaman konseptual siswa terhadap isu-isu lingkungan. Implikasi praktis dari penelitian ini adalah bahwa integrasi ML ke dalam kurikulum pendidikan SMK Pertanian di Indonesia bisa menjadi strategi efektif untuk mempersiapkan siswa menghadapi tantangan perubahan iklim, sekaligus berkontribusi pada pembangunan berkelanjutan. Namun, kesenjangan penelitian masih ada terkait penerapan ML dalam pendidikan mitigasi perubahan iklim di tingkat SMK, khususnya pada konteks kurikulum berbasis kompetensi.

Downloads

Download data is not yet available.

References

Agrawal, R. C., & Jaggi, S. (2023). Transforming Agricultural Education for a Sustainable Future. In Transformation of Agri-Food Systems (pp. 357–369). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-8014-7_25

Ajibade, S.-S. M., Zaidi, A., Bekun, F. V., Adediran, A. O., & Bassey, M. A. (2023). A research landscape bibliometric analysis on climate change for last decades: Evidence from applications of machine learning. Heliyon, 9(10), e20297. https://doi.org/10.1016/j.heliyon.2023.e20297

Balasundram, S. K., Shamshiri, R. R., Sridhara, S., & Rizan, N. (2023). The Role of Digital Agriculture in Mitigating Climate Change and Ensuring Food Security: An Overview. Sustainability, 15(6), 5325. https://doi.org/10.3390/su15065325

Bamal, A., Uddin, M. G., & Olbert, A. I. (2024). Harnessing machine learning for assessing climate change influences on groundwater resources: A comprehensive review. Heliyon, 10(17), e37073. https://doi.org/10.1016/j.heliyon.2024.e37073

Bao, N., Peng, K., Yan, X., Lu, Y., Liu, M., Li, C., & Zhao, B. (2024). Towards interpreting machine learning models for understanding the relationship between vegetation growth and climate factors: A case study of the Anhui Province, China. Ecological Indicators, 167, 112636. https://doi.org/10.1016/j.ecolind.2024.112636

Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115. https://doi.org/10.1016/j.inffus.2019.12.012

Bochenek, B., & Ustrnul, Z. (2022). Machine Learning in Weather Prediction and Climate Analyses—Applications and Perspectives. Atmosphere, 13(2), 180. https://doi.org/10.3390/atmos13020180

Crane-Droesch, A. (2018). Machine learning methods for crop yield prediction and climate change impact assessment in agriculture. Environmental Research Letters, 13(11), 114003. https://doi.org/10.1088/1748-9326/aae159

Grenier, M., Boudreault, J., Raymond, S., & Boudreault, M. (2024). Projected seasonal flooding in Canada under climate change with statistical and machine learning. Journal of Hydrology: Regional Studies, 53, 101754. https://doi.org/10.1016/j.ejrh.2024.101754

He, Y., Wang, G., Ren, Y., Gao, S., Chu, D., & McKirdy, S. J. (2024). Machine learning ensemble model prediction of northward shift in potato cyst nematodes (Globodera rostochiensis and G. pallida) distribution under climate change conditions. Journal of Integrative Agriculture, 23(10), 3576–3591. https://doi.org/10.1016/j.jia.2024.08.001

Helm, J. M., Swiergosz, A. M., Haeberle, H. S., Karnuta, J. M., Schaffer, J. L., Krebs, V. E., Spitzer, A. I., & Ramkumar, P. N. (2020). Machine Learning and Artificial Intelligence: Definitions, Applications, and Future Directions. Current Reviews in Musculoskeletal Medicine, 13(1), 69–76. https://doi.org/10.1007/s12178-020-09600-8

Jain, H., Dhupper, R., Shrivastava, A., Kumar, D., & Kumari, M. (2023). Leveraging machine learning algorithms for improved disaster preparedness and response through accurate weather pattern and natural disaster prediction. Frontiers in Environmental Science, 11. https://doi.org/10.3389/fenvs.2023.1194918

Khuriyati, N., Guritno, A. D., Kurniawan, M. P., Hidayah, N., & Hendry, J. (2023). Dissemination of SDGs 4, 9, 13 through Strengthening Curriculum for Senior Vocational High Schools. Proceedings of the 3rd International Conference on Community Engagement and Education for Sustainable Development, October 2023, 225–234. https://doi.org/10.21467/proceedings.151.32

Kolevatova, A., Riegler, M. A., Cherubini, F., Hu, X., & Hammer, H. L. (2021). Unraveling the Impact of Land Cover Changes on Climate Using Machine Learning and Explainable Artificial Intelligence. Big Data and Cognitive Computing, 5(4), 55. https://doi.org/10.3390/bdcc5040055

Kushwaha, N. L., Sushanth, K., Patel, A., Kisi, O., Ahmed, A., & Abd-Elaty, I. (2024). Beach nourishment for coastal aquifers impacted by climate change and population growth using machine learning approaches. Journal of Environmental Management, 370, 122535. https://doi.org/10.1016/j.jenvman.2024.122535

Leal Filho, W., Wall, T., Rui Mucova, S. A., Nagy, G. J., Balogun, A.-L., Luetz, J. M., Ng, A. W., Kovaleva, M., Safiul Azam, F. M., Alves, F., Guevara, Z., Matandirotya, N. R., Skouloudis, A., Tzachor, A., Malakar, K., & Gandhi, O. (2022). Deploying artificial intelligence for climate change adaptation. Technological Forecasting and Social Change, 180, 121662. https://doi.org/10.1016/j.techfore.2022.121662

Ma, Z., Awan, M. B., Lu, M., Li, S., Aziz, M. S., Zhou, X., Du, H., Sha, X., & Li, Y. (2023). An Overview of Emerging and Sustainable Technologies for Increased Energy Efficiency and Carbon Emission Mitigation in Buildings. Buildings, 13(10), 2658. https://doi.org/10.3390/buildings13102658

Mahdizadeh Gharakhanlou, N., & Perez, L. (2024). From data to harvest: Leveraging ensemble machine learning for enhanced crop yield predictions across Canada amidst climate change. Science of The Total Environment, 951, 175764. https://doi.org/10.1016/j.scitotenv.2024.175764

Miglani, A., & Kumar, N. (2019). Deep learning models for traffic flow prediction in autonomous vehicles: A review, solutions, and challenges. Vehicular Communications, 20, 100184. https://doi.org/10.1016/j.vehcom.2019.100184

Moradian, S., Iglesias, G., Broderick, C., & Olbert, I. A. (2023). Assessing the impacts of climate change on precipitation through a hybrid method of machine learning and discrete wavelet transform techniques, case study: Cork, Ireland. Journal of Hydrology: Regional Studies, 49, 101523. https://doi.org/10.1016/j.ejrh.2023.101523

Papakyriakou, A., Bigtashi, A., & Lee, B. (2024). Evaluating the applicability of a machine learning methodology to improve TMY weather file generation for different Canadian climate zones. Journal of Building Engineering, 95, 110096. https://doi.org/10.1016/j.jobe.2024.110096

Raihan, A. (2023). Artificial intelligence and machine learning applications in forest management and biodiversity conservation. Natural Resources Conservation and Research, 6(2), 3825. https://doi.org/10.24294/nrcr.v6i2.3825

Rifath, A. R., Muktadir, M. G., Hasan, M., & Islam, M. A. (2024). Flash flood prediction modeling in the hilly regions of Southeastern Bangladesh: A machine learning attempt on present and future climate scenarios. Environmental Challenges, 17, 101029. https://doi.org/10.1016/j.envc.2024.101029

Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., Lacoste, A., Sankaran, K., Ross, A. S., Milojevic-Dupont, N., Jaques, N., Waldman-Brown, A., Luccioni, A. S., Maharaj, T., Sherwin, E. D., Mukkavilli, S. K., Kording, K. P., Gomes, C. P., Ng, A. Y., Hassabis, D., Platt, J. C., … Bengio, Y. (2023). Tackling Climate Change with Machine Learning. ACM Computing Surveys, 55(2), 1–96. https://doi.org/10.1145/3485128

Sahoo, S., Singha, C., & Govind, A. (2024). Advanced prediction of rice yield gaps under climate uncertainty using machine learning techniques in Eastern India. Journal of Agriculture and Food Research, 18, 101424. https://doi.org/10.1016/j.jafr.2024.101424

Salcedo-Sanz, S., Ghamisi, P., Piles, M., Werner, M., Cuadra, L., Moreno-Martínez, A., Izquierdo-Verdiguier, E., Muñoz-Marí, J., Mosavi, A., & Camps-Valls, G. (2020). Machine learning information fusion in Earth observation: A comprehensive review of methods, applications and data sources. Information Fusion, 63, 256–272. https://doi.org/10.1016/j.inffus.2020.07.004

Sharma, V. (2020). Exploring the Predictive Power of Machine Learning for Energy Consumption in Buildings. Journal of Technological Innovations, 3(1). https://doi.org/10.93153/0svkc562

Shivaprakash, K. N., Swami, N., Mysorekar, S., Arora, R., Gangadharan, A., Vohra, K., Jadeyegowda, M., & Kiesecker, J. M. (2022). Potential for Artificial Intelligence (AI) and Machine Learning (ML) Applications in Biodiversity Conservation, Managing Forests, and Related Services in India. Sustainability, 14(12), 7154. https://doi.org/10.3390/su14127154

Siddaway, A. P., Wood, A. M., & Hedges, L. V. (2019). How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-Analyses, and Meta-Syntheses. Annual Review of Psychology, 70(1), 747–770. https://doi.org/10.1146/annurev-psych-010418-102803

Subramaniam, R. K., Samuel, S. D., Seera, M., & Alam, N. (2024). Utilising machine learning for corporate social responsibility (CSR) and environmental, social, and governance (ESG) evaluation: Transitioning from committees to climate. Sustainable Futures, 8, 100329. https://doi.org/10.1016/j.sftr.2024.100329

Tang, K. (2024). Climate change education in Indonesia’s formal education: a policy analysis. Npj Climate Action, 3(1), 57. https://doi.org/10.1038/s44168-024-00143-z

Wen, H., Hu, K., Nghiem, X.-H., & Acheampong, A. O. (2024). Urban climate adaptability and green total-factor productivity: Evidence from double dual machine learning and differences-in-differences techniques. Journal of Environmental Management, 350, 119588. https://doi.org/10.1016/j.jenvman.2023.119588

Xiao, F., Zhang, Z., Wu, Z., He, W., & Li, J. (2024). Machine learning-based climate zoning and asphalt selection for pavement infrastructure under changing climate: A focused study of Ningxia, China. International Journal of Transportation Science and Technology. https://doi.org/10.1016/j.ijtst.2024.10.001

Yang, J., Ahn, D., Bahk, J., Park, S., Rizqihandari, N., & Cha, M. (2024). Assessing climate risks from satellite imagery with machine learning: A case study of flood risks in Jakarta. Climate Risk Management, 46, 100651. https://doi.org/10.1016/j.crm.2024.100651

Zennaro, F., Furlan, E., Simeoni, C., Torresan, S., Aslan, S., Critto, A., & Marcomini, A. (2021). Exploring machine learning potential for climate change risk assessment. Earth-Science Reviews, 220, 103752. https://doi.org/10.1016/j.earscirev.2021.103752

Zhang, X., Zhang, Z., Liu, Y., Xu, Z., & Qu, X. (2024). A review of machine learning approaches for electric vehicle energy consumption modelling in urban transportation. Renewable Energy, 234, 121243. https://doi.org/10.1016/j.renene.2024.121243

Zhong, C., Li, L., & Wang, Y.-Z. (2024). Applications of chemical fingerprints and machine learning in plant ecology: Recent progress and future perspectives. Microchemical Journal, 206, 111447. https://doi.org/10.1016/j.microc.2024.111447

Downloads

Published

2024-11-21

How to Cite

Astuti, W. P., & Munir, M. (2024). Penggunaan Aplikasi Machine Learning (Ml) dalam Kurikulum Perubahan Iklim. Journal of Education Research, 5(4), 5620–5631. https://doi.org/10.37985/jer.v5i4.1841

Issue

Section

Articles

Categories