Optimalisasi Teknik Chaining dan Reinforcement untuk Meningkatkan Kemandirian Anak Usia Dini
DOI:
https://doi.org/10.37985/jer.v5i4.1670Keywords:
Kemandirian anak, Teknik chaining, Reinforcement positifAbstract
Kemandirian merupakan keterampilan penting yang harus dikembangkan sejak usia dini, karena berperan dalam membentuk kepribadian dan kemampuan anak dalam menjalani aktivitas sehari-hari. Penelitian ini bertujuan untuk menganalisis efektivitas teknik chaining dan reinforcement dalam meningkatkan kemandirian anak usia dini, terutama dalam hal makan, berpakaian, dan menjaga kebersihan diri. Melalui pendekatan Study Literature Review, berbagai literatur ilmiah terkini dianalisis untuk memahami dampak dan faktor yang mempengaruhi keberhasilan kedua teknik tersebut. Hasil penelitian menunjukkan bahwa chaining membantu anak memecah tugas-tugas kompleks menjadi langkah yang lebih sederhana, sementara reinforcement positif mampu meningkatkan motivasi anak untuk bertindak secara mandiri. Kombinasi kedua teknik ini memberikan hasil yang signifikan dalam mempercepat perkembangan kemandirian anak. Simpulan penelitian menekankan bahwa penerapan chaining dan reinforcement yang konsisten dan didukung lingkungan sosial efektif dalam mengembangkan kemandirian anak usia dini, dengan rekomendasi untuk penelitian lebih lanjut pada aspek kemandirian lainnya.
Downloads
References
Akbari, M., Abedi, M. R., Joda, R., Pourghasemian, M., Mokari, N., & Erol-Kantarci, M. (2021). Age of Information Aware VNF Scheduling in Industrial IoT Using Deep Reinforcement Learning. IEEE Journal on Selected Areas in Communications, 39(8), 2487–2500. https://doi.org/10.1109/JSAC.2021.3087264
Bagaria, A., Senthil, J., Slivinski, M., & Konidaris, G. (2021). Robustly Learning Composable Options in Deep Reinforcement Learning. IJCAI International Joint Conference on Artificial Intelligence, 2161–2169. https://doi.org/10.24963/ijcai.2021/298
Blau, T., Bonilla, E. V., Chades, I., & Dezfouli, A. (2022). Optimizing Sequential Experimental Design with Deep Reinforcement Learning. Proceedings of Machine Learning Research, 162, 2107–2128.
Bresler, G., Jain, P., Nagaraj, D., Netrapalli, P., & Wu, X. (2020). Least squares regression with Markovian data: Fundamental limits and algorithms. Advances in Neural Information Processing Systems, 2020-December(NeurIPS 2020).
Crawley, D., Zhang, L., Jones, E. J. H., Ahmad, J., Oakley, B., Cáceres, A. S. J., Charman, T., Buitelaar, J. K., Murphy, D. G. M., Chatham, C., den Ouden, H., & Loth, E. (2020). Modeling flexible behavior in childhood to adulthood shows age-dependent learning mechanisms and less optimal learning in autism in each age group. PLoS Biology, 18(10), 1–25. https://doi.org/10.1371/journal.pbio.3000908
Creswell, J. W., & Creswell, J. D. (2018). Mixed Methods Procedures. In Research Defign: Qualitative, Quantitative, and Mixed M ethods Approaches.
Dahlan, A., Sultan Ibrahim, S. A., Mohd Nazmi, N. A. A., & Nurhidayah, N. (2022). The Behavioural Techniques Used to Improve Activities of Daily Living among Children with Intellectual Disabilities: A scoping review. Environment-Behaviour Proceedings Journal, 7(20), 17–23. https://doi.org/10.21834/ebpj.v7i20.3429
Elmoiz Alatabani, L., Sayed Ali, E., Mokhtar, R. A., Saeed, R. A., Alhumyani, H., & Kamrul Hasan, M. (2022). Deep and Reinforcement Learning Technologies on Internet of Vehicle (IoV) Applications: Current Issues and Future Trends. Journal of Advanced Transportation, 2022. https://doi.org/10.1155/2022/1947886
Emmanuel Adeyemi Abaku, Tolulope Esther Edunjobi, & Agnes Clare Odimarha. (2024). Theoretical approaches to AI in supply chain optimization: Pathways to efficiency and resilience. International Journal of Science and Technology Research Archive, 6(1), 092–107. https://doi.org/10.53771/ijstra.2024.6.1.0033
Fu, T., Gao, W., Coley, C. W., & Sun, J. (2022). Reinforced Genetic Algorithm for Structure-based Drug Design. Advances in Neural Information Processing Systems, 35(NeurIPS), 1–14.
Halperin, I. (2022). Reinforcement Learning and Stochastic Optimization: A Unified Framework for Sequential Decisions. Quantitative Finance, 22(12), 2151–2154. https://doi.org/10.1080/14697688.2022.2135456
Karmali, S., Battram, D. S., Burke, S. M., Cramp, A., Johnson, A. M., Mantler, T., Morrow, D., Ng, V., Pearson, E. S., Petrella, R. J., Tucker, P., & Irwin, J. D. (2020). Perspectives and impact of a parent-child intervention on dietary intake and physical activity behaviours, parental motivation, and parental body composition: A randomized controlled trial. International Journal of Environmental Research and Public Health, 17(18), 1–41. https://doi.org/10.3390/ijerph17186822
Ma, Y., Arshad, S., Muniraju, S., Torkildson, E., Rantala, E., Doppler, K., & Zhou, G. (2021). Location- and Person-Independent Activity Recognition with WiFi, Deep Neural Networks, and Reinforcement Learning. ACM Transactions on Internet of Things, 2(1), 1–25. https://doi.org/10.1145/3424739
Marhani, I., Mz, I., & Syarif, D. F. T. (2023). Chaining and Prompting Technique of Behavior Modification to Improve Adaptive Skills in Child with Intellectual Disability. International Journal of Universal Education, 1(1), 24–29. https://doi.org/10.33084/ijue.v1i1.5777
Mousa, M., van de Berg, D., Kotecha, N., del Rio Chanona, E. A., & Mowbray, M. (2024). An analysis of multi-agent reinforcement learning for decentralized inventory control systems. Computers and Chemical Engineering, 188(June), 108783. https://doi.org/10.1016/j.compchemeng.2024.108783
Pasupuleti, V., Thuraka, B., Kodete, C. S., & Malisetty, S. (2024). Enhancing Supply Chain Agility and Sustainability through Machine Learning: Optimization Techniques for Logistics and Inventory Management. Logistics, 8(3), 73. https://doi.org/10.3390/logistics8030073
Peng, Z., Li, Q., Hui, K. M., Liu, C., & Zhou, B. (2021). Learning to Simulate Self-Driven Particles System with Coordinated Policy Optimization. Advances in Neural Information Processing Systems, 13(NeurIPS), 10784–10797.
Qiu, R., Sun, Z., & Yang, Y. (2022). DIMES: A Differentiable Meta Solver for Combinatorial Optimization Problems. Advances in Neural Information Processing Systems, 35(NeurIPS).
Rajaraman, A., Hanley, G. P., Gover, H. C., Staubitz, J. L., Staubitz, J. E., Simcoe, K. M., & Metras, R. (2022). Minimizing Escalation by Treating Dangerous Problem Behavior Within an Enhanced Choice Model. Behavior Analysis in Practice, 15(1), 219–242. https://doi.org/10.1007/s40617-020-00548-2
Rolf, B., Jackson, I., Müller, M., Lang, S., Reggelin, T., & Ivanov, D. (2023). A review on reinforcement learning algorithms and applications in supply chain management. International Journal of Production Research, 61(20), 7151–7179. https://doi.org/10.1080/00207543.2022.2140221
Sellami, B., Hakiri, A., & Ben Yahia, S. (2022). Deep Reinforcement Learning for energy-aware task offloading in join SDN-Blockchain 5G massive IoT edge network. Future Generation Computer Systems, 137(August), 363–379. https://doi.org/10.1016/j.future.2022.07.024
Smythe, T., Zuurmond, M., Tann, C. J., Gladstone, M., & Kuper, H. (2021). Early intervention for children with developmental disabilities in low and middle-income countries - The case for action. International Health, 13(3), 222–231. https://doi.org/10.1093/inthealth/ihaa044
Soleymani, F., & Paquet, E. (2021). Deep graph convolutional reinforcement learning for financial portfolio management – DeepPocket. Expert Systems with Applications, 182. https://doi.org/10.1016/j.eswa.2021.115127
Sugiyono. (2021). Metode Penelitian Kuantitaif, Kualitatif, R&D. Alfabeta.
Sun, Z., & Yang, Y. (2023). DIFUSCO: Graph-based Diffusion Solvers for Combinatorial Optimization. Advances in Neural Information Processing Systems, 36(NeurIPS).
Wang, T., Zu, J., Hu, G., & Peng, D. (2020). Adaptive service function chain scheduling in mobile edge computing via deep reinforcement learning. IEEE Access, 8, 164922–164935. https://doi.org/10.1109/ACCESS.2020.3022038
Yan, J., Yang, S., & Hancock, E. (2020). Learning for graph matching and related combinatorial optimization problems Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence , Learning for Graph Matching and Related Combinatorial. Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence IJCAI-20, 1–9.
Yao, J., Lin, L., & Bukov, M. (2021). Reinforcement Learning for Many-Body Ground-State Preparation Inspired by Counterdiabatic Driving. Physical Review X, 11(3), 31070. https://doi.org/10.1103/PhysRevX.11.031070
Downloads
Published
Check index
How to Cite
Citation Check
License
Copyright (c) 2024 ina Herawati, luluk Iffatur Rocmah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgement of the works authorship and initial publication in this journal.Â
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journals published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).