Optimalisasi Teknik Chaining dan Reinforcement untuk Meningkatkan Kemandirian Anak Usia Dini

Authors

  • ina Herawati Pendidikan Guru Pendidikan Anak Usia Dini, Universitas Muhammadiyah Sidoarjo, Indonesia
  • luluk Iffatur Rocmah Pendidikan Guru Pendidikan Anak Usia Dini, Universitas Muhammadiyah Sidoarjo, Indonesia

DOI:

https://doi.org/10.37985/jer.v5i4.1670

Keywords:

Kemandirian anak, Teknik chaining, Reinforcement positif

Abstract

Kemandirian merupakan keterampilan penting yang harus dikembangkan sejak usia dini, karena berperan dalam membentuk kepribadian dan kemampuan anak dalam menjalani aktivitas sehari-hari. Penelitian ini bertujuan untuk menganalisis efektivitas teknik chaining dan reinforcement dalam meningkatkan kemandirian anak usia dini, terutama dalam hal makan, berpakaian, dan menjaga kebersihan diri. Melalui pendekatan Study Literature Review, berbagai literatur ilmiah terkini dianalisis untuk memahami dampak dan faktor yang mempengaruhi keberhasilan kedua teknik tersebut. Hasil penelitian menunjukkan bahwa chaining membantu anak memecah tugas-tugas kompleks menjadi langkah yang lebih sederhana, sementara reinforcement positif mampu meningkatkan motivasi anak untuk bertindak secara mandiri. Kombinasi kedua teknik ini memberikan hasil yang signifikan dalam mempercepat perkembangan kemandirian anak. Simpulan penelitian menekankan bahwa penerapan chaining dan reinforcement yang konsisten dan didukung lingkungan sosial efektif dalam mengembangkan kemandirian anak usia dini, dengan rekomendasi untuk penelitian lebih lanjut pada aspek kemandirian lainnya.

Downloads

Download data is not yet available.

References

Akbari, M., Abedi, M. R., Joda, R., Pourghasemian, M., Mokari, N., & Erol-Kantarci, M. (2021). Age of Information Aware VNF Scheduling in Industrial IoT Using Deep Reinforcement Learning. IEEE Journal on Selected Areas in Communications, 39(8), 2487–2500. https://doi.org/10.1109/JSAC.2021.3087264

Bagaria, A., Senthil, J., Slivinski, M., & Konidaris, G. (2021). Robustly Learning Composable Options in Deep Reinforcement Learning. IJCAI International Joint Conference on Artificial Intelligence, 2161–2169. https://doi.org/10.24963/ijcai.2021/298

Blau, T., Bonilla, E. V., Chades, I., & Dezfouli, A. (2022). Optimizing Sequential Experimental Design with Deep Reinforcement Learning. Proceedings of Machine Learning Research, 162, 2107–2128.

Bresler, G., Jain, P., Nagaraj, D., Netrapalli, P., & Wu, X. (2020). Least squares regression with Markovian data: Fundamental limits and algorithms. Advances in Neural Information Processing Systems, 2020-December(NeurIPS 2020).

Crawley, D., Zhang, L., Jones, E. J. H., Ahmad, J., Oakley, B., Cáceres, A. S. J., Charman, T., Buitelaar, J. K., Murphy, D. G. M., Chatham, C., den Ouden, H., & Loth, E. (2020). Modeling flexible behavior in childhood to adulthood shows age-dependent learning mechanisms and less optimal learning in autism in each age group. PLoS Biology, 18(10), 1–25. https://doi.org/10.1371/journal.pbio.3000908

Creswell, J. W., & Creswell, J. D. (2018). Mixed Methods Procedures. In Research Defign: Qualitative, Quantitative, and Mixed M ethods Approaches.

Dahlan, A., Sultan Ibrahim, S. A., Mohd Nazmi, N. A. A., & Nurhidayah, N. (2022). The Behavioural Techniques Used to Improve Activities of Daily Living among Children with Intellectual Disabilities: A scoping review. Environment-Behaviour Proceedings Journal, 7(20), 17–23. https://doi.org/10.21834/ebpj.v7i20.3429

Elmoiz Alatabani, L., Sayed Ali, E., Mokhtar, R. A., Saeed, R. A., Alhumyani, H., & Kamrul Hasan, M. (2022). Deep and Reinforcement Learning Technologies on Internet of Vehicle (IoV) Applications: Current Issues and Future Trends. Journal of Advanced Transportation, 2022. https://doi.org/10.1155/2022/1947886

Emmanuel Adeyemi Abaku, Tolulope Esther Edunjobi, & Agnes Clare Odimarha. (2024). Theoretical approaches to AI in supply chain optimization: Pathways to efficiency and resilience. International Journal of Science and Technology Research Archive, 6(1), 092–107. https://doi.org/10.53771/ijstra.2024.6.1.0033

Fu, T., Gao, W., Coley, C. W., & Sun, J. (2022). Reinforced Genetic Algorithm for Structure-based Drug Design. Advances in Neural Information Processing Systems, 35(NeurIPS), 1–14.

Halperin, I. (2022). Reinforcement Learning and Stochastic Optimization: A Unified Framework for Sequential Decisions. Quantitative Finance, 22(12), 2151–2154. https://doi.org/10.1080/14697688.2022.2135456

Karmali, S., Battram, D. S., Burke, S. M., Cramp, A., Johnson, A. M., Mantler, T., Morrow, D., Ng, V., Pearson, E. S., Petrella, R. J., Tucker, P., & Irwin, J. D. (2020). Perspectives and impact of a parent-child intervention on dietary intake and physical activity behaviours, parental motivation, and parental body composition: A randomized controlled trial. International Journal of Environmental Research and Public Health, 17(18), 1–41. https://doi.org/10.3390/ijerph17186822

Ma, Y., Arshad, S., Muniraju, S., Torkildson, E., Rantala, E., Doppler, K., & Zhou, G. (2021). Location- and Person-Independent Activity Recognition with WiFi, Deep Neural Networks, and Reinforcement Learning. ACM Transactions on Internet of Things, 2(1), 1–25. https://doi.org/10.1145/3424739

Marhani, I., Mz, I., & Syarif, D. F. T. (2023). Chaining and Prompting Technique of Behavior Modification to Improve Adaptive Skills in Child with Intellectual Disability. International Journal of Universal Education, 1(1), 24–29. https://doi.org/10.33084/ijue.v1i1.5777

Mousa, M., van de Berg, D., Kotecha, N., del Rio Chanona, E. A., & Mowbray, M. (2024). An analysis of multi-agent reinforcement learning for decentralized inventory control systems. Computers and Chemical Engineering, 188(June), 108783. https://doi.org/10.1016/j.compchemeng.2024.108783

Pasupuleti, V., Thuraka, B., Kodete, C. S., & Malisetty, S. (2024). Enhancing Supply Chain Agility and Sustainability through Machine Learning: Optimization Techniques for Logistics and Inventory Management. Logistics, 8(3), 73. https://doi.org/10.3390/logistics8030073

Peng, Z., Li, Q., Hui, K. M., Liu, C., & Zhou, B. (2021). Learning to Simulate Self-Driven Particles System with Coordinated Policy Optimization. Advances in Neural Information Processing Systems, 13(NeurIPS), 10784–10797.

Qiu, R., Sun, Z., & Yang, Y. (2022). DIMES: A Differentiable Meta Solver for Combinatorial Optimization Problems. Advances in Neural Information Processing Systems, 35(NeurIPS).

Rajaraman, A., Hanley, G. P., Gover, H. C., Staubitz, J. L., Staubitz, J. E., Simcoe, K. M., & Metras, R. (2022). Minimizing Escalation by Treating Dangerous Problem Behavior Within an Enhanced Choice Model. Behavior Analysis in Practice, 15(1), 219–242. https://doi.org/10.1007/s40617-020-00548-2

Rolf, B., Jackson, I., Müller, M., Lang, S., Reggelin, T., & Ivanov, D. (2023). A review on reinforcement learning algorithms and applications in supply chain management. International Journal of Production Research, 61(20), 7151–7179. https://doi.org/10.1080/00207543.2022.2140221

Sellami, B., Hakiri, A., & Ben Yahia, S. (2022). Deep Reinforcement Learning for energy-aware task offloading in join SDN-Blockchain 5G massive IoT edge network. Future Generation Computer Systems, 137(August), 363–379. https://doi.org/10.1016/j.future.2022.07.024

Smythe, T., Zuurmond, M., Tann, C. J., Gladstone, M., & Kuper, H. (2021). Early intervention for children with developmental disabilities in low and middle-income countries - The case for action. International Health, 13(3), 222–231. https://doi.org/10.1093/inthealth/ihaa044

Soleymani, F., & Paquet, E. (2021). Deep graph convolutional reinforcement learning for financial portfolio management – DeepPocket. Expert Systems with Applications, 182. https://doi.org/10.1016/j.eswa.2021.115127

Sugiyono. (2021). Metode Penelitian Kuantitaif, Kualitatif, R&D. Alfabeta.

Sun, Z., & Yang, Y. (2023). DIFUSCO: Graph-based Diffusion Solvers for Combinatorial Optimization. Advances in Neural Information Processing Systems, 36(NeurIPS).

Wang, T., Zu, J., Hu, G., & Peng, D. (2020). Adaptive service function chain scheduling in mobile edge computing via deep reinforcement learning. IEEE Access, 8, 164922–164935. https://doi.org/10.1109/ACCESS.2020.3022038

Yan, J., Yang, S., & Hancock, E. (2020). Learning for graph matching and related combinatorial optimization problems Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence , Learning for Graph Matching and Related Combinatorial. Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence IJCAI-20, 1–9.

Yao, J., Lin, L., & Bukov, M. (2021). Reinforcement Learning for Many-Body Ground-State Preparation Inspired by Counterdiabatic Driving. Physical Review X, 11(3), 31070. https://doi.org/10.1103/PhysRevX.11.031070

Downloads

Published

2024-10-04

How to Cite

Herawati, ina, & Rocmah, luluk I. (2024). Optimalisasi Teknik Chaining dan Reinforcement untuk Meningkatkan Kemandirian Anak Usia Dini. Journal of Education Research, 5(4), 4712–4721. https://doi.org/10.37985/jer.v5i4.1670

Issue

Section

Articles

Categories

Citation Check